2 6 Ja n 19 96 ESTIMATES FOR JACOBI - SOBOLEV TYPE ORTHOGONAL POLYNOMIALS
نویسندگان
چکیده
Let the Sobolev-type inner product f, g = R f gdµ 0 + R f ′ g ′ dµ 1 with µ 0 = w + M δ c , µ 1 = N δ c where w is the Jacobi weight, c is either 1 or −1 and M, N ≥ 0. We obtain estimates and asymptotic properties on [−1, 1] for the polynomials orthonormal with respect to .,. and their kernels. We also compare these polynomials with Jacobi orthonormal polynomials.
منابع مشابه
Estimates for Jacobi-sobolev Type Orthogonal Polynomials
Let the Sobolev-type inner product 〈f, g〉 = ∫
متن کاملA Cohen Type Inequality for Fourier Expansions of Orthogonal Polynomials with a Non-discrete Jacobi-sobolev Inner Product
Let {Q n (x)}n≥0 denote the sequence of polynomials orthogonal with respect to the non-discrete Sobolev inner product ⟨f, g⟩ = ∫ 1 −1 f(x)g(x)dμα,β(x) + λ ∫ 1 −1 f (x)g(x)dμα+1,β(x) where λ > 0 and dμα,β(x) = (1− x)α(1 + x)βdx with α > −1, β > −1. In this paper we prove a Cohen type inequality for the Fourier expansion in terms of the orthogonal polynomials {Q n (x)}n. Necessary conditions for ...
متن کاملAsymptotic behavior of varying discrete Jacobi-Sobolev orthogonal polynomials
In this contribution we deal with a varying discrete Sobolev inner product involving the Jacobi weight. Our aim is to study the asymptotic properties of the corresponding orthogonal polynomials and the behavior of their zeros. We are interested in Mehler–Heine type formulae because they describe the essential differences from the point of view of the asymptotic behavior between these Sobolev or...
متن کامل2 9 Ja n 20 04 MEAN CONVERGENCE OF ORTHOGONAL FOURIER SERIES AND INTERPOLATING POLYNOMIALS
For a family of weight functions that include the general Jacobi weight functions as special cases, exact condition for the convergence of the Fourier orthogonal series in the weighted L space is given. The result is then used to establish a Marcinkiewicz-Zygmund type inequality and to study weighted mean convergence of various interpolating polynomials based on the zeros of the corresponding o...
متن کاملAn Introduction to Group Representations and Orthogonal Polynomials
An elementary non-technical introduction to group representations and orthogonal polynomials is given. Orthogonality relations for the spherical functions for the rotation groups in Euclidean space (ultraspherical polynomials), and the matrix elements of SU(2) (Jacobi polynomials) are discussed. A general theory for finite groups acting on graphs, giving a finite set of discrete orthogonal poly...
متن کامل